FIG. 3 Percentage virus-induced mortality in wild-type (shaded bars) and recombinant (black bars) treatments at three virus doses, sampled on four occasions; a, 2 days; b, 7 days; c, 11 days; and d, 16 days after release. Error bars are the least significant difference between treatments. Each timepoint was analysed separately. For the first two timepoints, mortality varied between doses (day 2; F = 155.2; d.f. = 2.20; P < 0.001; ANOVA with binomial errors and scale parameter 2.98; day 7; F = 154.8; d.f. = 2.20; P < 0.001, ANOVA with binomial errors and scale parameter 2.39), but mortality did not differ significantly between virus treatments (day 2; F = 3.04; d.f. = 1.20; n.s.; ANOVA as above; day 7; F = 3.97; d.f. = 1; n.s.; ANOVA as above). However, at days 11 and 16, both virus type and dose were significantly different, with the recombinant virus causing significantly lower mortality (day 11: virus type: F = 30.28; d.f. = 1.20; P < 0.01; dose: F = 73.8; d.f. = 2.20; P < 0.01; Day 16, virus type: F = 41.33; d.f. = 1.20; P < 0.01; dose: F = 17.29; d.f. = 2.20; P < 0.01). In each case the analysis is weighted according to the sample size, so allowing for the difference in recovery rates illustrated in Fig. 2.

Correlated neuronal discharge rate and its implications for psychophysical performance

Ehud Zohary, Michael N. Shadlen & William T. Newsome*

Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA

Single neurons can signal subtle changes in the sensory environment with surprising fidelity, often matching the perceptual sensitivity of trained psychophysical observers. This similarity poses an intriguing puzzle: why is psychophysical sensitivity not greater than that of single neurons? Pooling responses across neurons should average out noise in the activity of single cells, leading to substantially improved psychophysical performance. If, however, noise is correlated among these neurons, the beneficial effects of pooling would be diminished. To assess correlation within a pool, the responses of pairs of neurons were recorded simultaneously during repeated stimulus presentations. We report here that the observed covariation in spike count was relatively weak, the correlation coefficient averaging 0.12. A theoretical analysis revealed, however, that weak correlation can limit substantially the signalling capacity of the pool. In addition, theory suggests a relationship between neuronal responses and psychophysical decisions which may prove useful for identifying cell populations underlying specific perceptual capacities.

We obtained data from 100 pairs of neurons in the middle temporal visual area (MT, or V5) while three rhesus monkeys viewed random dot patterns presented on a video monitor. Because directionally selective neurons in MT supply signals for discriminating the direction of motion in these displays, this system provides an ideal opportunity to measure correlation within a pool of sensory neurons contributing to psychophysical performance. Action potentials were recorded using a single electrode and a spike sorting device which recognized individual

*To whom correspondence should be addressed.
We accepted data only from experiments with excellent separa-
tion between the two templates and between each template and
the background noise.

Responses were recorded during two behavioural tasks, fixa-
tion and discrimination. In the former, the monkeys maintained
fixation while the visual stimulus was presented within the recep-
tive fields of the two cells. We measured the directional tuning
of each neuron and used these data to assess the degree of corre-
lated responsiveness. In the discrimination task, the monkeys
reported the direction of coherent motion embedded in a field
of random motion noise (see Fig. 1 legend). These data allowed
us to assess correlated responsiveness during performance of the
discrimination task. Figure 1 illustrates the responses of a pair
of MT neurons in the two tasks. Both cells responded selectively
to the direction of coherent motion12, but signalled direction
with decreasing reliability as coherent motion was reduced12.

For each pair, we computed the correlation coefficient, r, be-
 tween the responses of the two neurons to multiple presenta-
tions of a given stimulus. This process was repeated for each
stimulus condition tested. Throughout our analyses a response
was considered to be the total number of action potentials
recorded during presentation of a visual stimulus. A z^2 test of
homogeneity showed that the correlation coefficients computed
for a pair of neurons were independent of stimulus condition in
89% of the experiments ($P > 0.05$; correlation coefficients were
first transformed to Fisher's z to conform to normality
assumptions13). Furthermore, we found no systematic difference
in the average correlation coefficient between the two beha-
vioral tasks (paired t-test, $P > 0.75$). We therefore combined data
across stimulus conditions and tasks to compute a single correla-
tion coefficient for each pair of neurons. To remove the influence
of confounding variables such as stimulus strength, spike counts
were converted to z-scores using the mean and standard deviation
for repetitions of each stimulus type. We then calculated the
correlation coefficient between ordered pairs of z-scores.

For the 100 pairs of MT neurons, the mean correlation coefficient
was 0.12, a value significantly greater than zero (t-test, $P < 0.0001$).
Furthermore, the correlation coefficient depended significantly on
the direction in preferred direction of the two neurons. Figure 2a shows the distribution of correlation

\begin{figure}
\centering
\includegraphics[width=0.9\textwidth]{figure1.png}
\caption{Average responses of a pair of simultaneously recorded MT
neurons during the fixation and discrimination tasks. Polar plots (a, c)
are direction tuning curves measured during the fixation task for neuron
1 (a, b) and neuron 2 (c, d). For each data point, the angle indicates
the direction of stimulus motion and the distance from the origin rep-
resents the average response (spikes per s) to that direction. Coher-
ence–response functions (b, d) depict average responses to motion
signals of increasing strength. Empty symbols indicate responses to
preferred direction motion and filled symbols show responses to the
opposite (null) direction. Error bars denote standard deviations.
METHODS: Our methods have been described previously10. To summar-
ize, direction tuning curves were measured with moving random dot
patterns. The position of the dot pattern and the motion speed were
set to stimulate the receptive fields of both neurons as well as possible.
In the discrimination task, a specified percentage of dots in the visual
display moved coherently in one direction while the remaining dots were
plotted briefly at random locations, creating a masking motion noise.
Monkeys received liquid rewards for reporting the direction of coherent
motion correctly. Task difficulty was varied by changing the percentage
of dots in coherent motion. On each trial, the direction of motion was
either the preferred or null direction of the recorded neurons. If the
preferred directions of the two neurons differed substantially, the axis
of discrimination was set to the preferred-null axis of the best-responding
neuron. In both the discrimination and fixation tasks, each stimulus
condition was repeated 10–40 times in random order. Both discrimina-
tion and fixation data were obtained for 42 pairs of neurons; fixation
data alone were obtained for the remaining pairs.

\begin{figure}
\centering
\includegraphics[width=0.9\textwidth]{figure2.png}
\caption{Frequency histograms of the correlation coefficients measured
between pairs of MT
neurons. a. Distribution of correlation coeffi-
cients for 52 pairs of neurons whose pre-
ferred directions differed by less than 90°. b. Dis-
tribution of coefficients for 13 pairs of neurons
whose preferred direc-
tions differed by more
than 90° and 35 pairs for
which one neuron was
donot directional. Three
analyses were done to
control for artefactual
sources of correlated
responsiveness. First,
we suppressed slow
changes in responsiveness by renormaliz-
ing the standardized responses in blocks of
20 trials. This manipulation removed any yoked
drift in overall respons-
iveness that might
cause spurious correla-
tion between the two neurons, but had no effect on the computed correla-
tion coefficients (paired t-test, $P > 0.9$). To ensure that correlations were
not driven entirely by outlier data points (resulting, perhaps, from brief
lapses in the quality of isolation), we 'pruned' from each data set trials on
which the response of either neuron was more than two standard devia-
tions from that neuron's mean response for a given stimulus condition.
Pruning did not affect the correlation coefficients (paired t-test, $P > 0.4$).
Last, our random dot patterns typically are computed uniquely on each
trial so that the monkey cannot solve the task by memorizing specific pat-
terns of dots for each motion condition. This, however, introduces a small
amount of variation among nominally identical stimuli that might give rise
to a spurious correlation. For four neuronal pairs, therefore, we obtained
data using stimuli computed in the usual manner and then using a single
precodeterminated random dot pattern for each stimulus condition (the
difference in preferred directions was less than 45° for three pairs and
was 103° for the remaining pair). Without stimulus-induced variance, the
mean correlation coefficient remained significantly greater than 0 (paired
t-test, $P < 0.005$). The correlation coefficients were similar with and
without stimulus variation (means = 0.15 and 0.22, respectively),
although our sample is too small to exclude the possibility of a moderate
difference.

\end{figure}
FIG. 3 Effect of pooling for different levels of correlation. a, Signal-to-noise ratio of the pooled average response as a function of increasing pool size. b, Covariation between individual responses and the pooled average response (ordinate) as a function of increasing pool size (abscissa). Each curve shows results for a particular correlation level within the pool (mean correlation, \(r = 0 \) to 0.5 in increments of 0.05). The dashed curves indicate the correlation levels that are most plausible from our physiological data. The curves represent analytical solutions to the equations presented below for \(M \) identically distributed neural signals. In the present context, each signal distribution represents the responses of a single neuron contributing to a sensory pool. The assumption of identically distributed signals, while overly simplified from real pools of neurons, is convenient computationally and does not influence our conclusions substantially. For \(a \), we calculate the signal-to-noise ratio of \(M \) summed signals, \(X_1, \ldots, X_M \): \[
S/N = \left(\frac{\sum_{i=1}^{M} X_i}{\sigma_x} \right) = \frac{M\langle X \rangle}{\sqrt{\sum_{i=1}^{M} \sum_{j=1}^{M} \text{Cov}[X_i, X_j]}} = \frac{M\langle X \rangle}{\sqrt{M\sigma_x^2 + M(M-1)r\sigma_x^2}}.
\]

where \(\sigma_x \) is the standard deviation of the sum and brackets denote expectation. Each curve depicts the S/N of the pool normalized to the S/N of a single neural signal. For large \(M \), improvement is limited by \(1/\sqrt{M} \). For \(b \), we compute the expected correlation, \(\rho \), between one random signal, \(X_1 \), and the sum of \(X_1, \ldots, X_M \). The covariance can be written as \[
\rho \sigma_1 \sigma_x = \rho \sigma_x \sqrt{\sum_{i=1}^{M} \sum_{j=1}^{M} \text{Cov}[X_i, X_j]} = \rho \sigma_x \sqrt{M\sigma_x^2 + M(M-1)r\sigma_x^2}
\]
or in terms of products and their expectations \[
\text{Cov}\left[X_1, \sum_{i=1}^{M} X_i \right] = \left(\sum_{i=1}^{M} X_i \right)^2 - M\langle X \rangle^2 = \sigma_x^2 + \sum_{i=2}^{M} \text{Cov}[X_i, X_i]
\]

where \(r_1 \) is the average correlation coefficient between signal 1 and each of the other signals. Solving for \(\rho \) in equations (2) and (3) we obtain \[
\rho = \frac{1 + (M-1)r_1}{\sqrt{M + M(M-1)r_1}}
\]
The correlation coefficient, \(\rho \), between a single random signal and the sum to which it contributes is plotted in \(b \). By analogy with real neuronal pools, this correlation could reflect the covariation between a single neuron's response and the outcome of a psychophysical decision governed by the summed signal, or decision variable. Even with arbitrarily large pools the correlation asymptotes at \(\sqrt{r_1} \).

coefficients for pairs of neurons whose preferred directions differed by less than 90 degrees, and Fig. 2b depicts the corresponding distribution for pairs that failed to meet this condition. The difference between the two distributions is highly significant (t-test, \(P < 0.001 \)). The correlation values in Fig. 2a agree well with similar measurements made in striate cortex of cats\(^{13}\) and inferotemporal cortex of monkeys\(^{14}\).

Our data indicate that adjacent MT neurons covary weakly in their response to visual stimuli. Even such weak covariation places fundamental limits on the signal-to-noise ratio (S/N) of any stimulus represented in the activity of a pool of sensory neurons. Figure 3a shows the expected improvement in S/N conferred by signal averaging among neuronal pools of increasing size. If neurons within the pool are independent (\(r = 0 \)), then S/N should improve by the square root of their number. If neurons within the pool covary even weakly, however, S/N of the pooled response is limited, reaching an asymptote at \(r^{-1/2} \), times the S/N of a single neuron in the pool. Note that little increase in S/N is expected for pool sizes larger than 50–100 neurons. Thus, the beneficial effects of pooling are curtailed sharply by weak correlation, rendering more plausible the impressive sensitivity of single neurons relative to psychophysical threshold.

Because our data were recorded from adjacent neurons, we may have overestimated the average correlation in the pool if correlation declines with distance between neurons. Figure 3a shows, however, that S/N would reach an asymptotic limit near 100 neurons even if the average correlation within the pool were less than our measured value.

Weak correlation can lead to a covariation between the noisy responses of single neurons and psychophysical decisions. Figure 3b illustrates the trial-to-trial correlation expected between the responses of any single neuron and the pooled signals represented in Fig. 3a. If neurons within the pool are independent, the covariation of any one neuron with the pooled response must vanish with increasing pool size (\(r = 0 \)). If pairs of neurons covary even weakly, however, each neuron retains a covariation with the pooled average even for large pools. If psychophysical decisions are based on pooled signals like those in Fig. 3, near-threshold decisions should be correlated with the response fluctuations of single neurons within the pool.

We have in fact observed such covariation between neuronal responses and psychophysical decisions during performance on our direction discrimination task\(^{20,21}\), and a similar phenomenon has been reported in the somatosensory system\(^{22}\). Our analysis suggests that the covariation of single-neuron responses and psychophysical decisions, an observation that strains credulity at first glance, is a logical consequence of weakly correlated noise within the pool of sensory neurons leading to the decision. If such covariation is a general characteristic of neuronal pools underlying psychophysical performance, trial-to-trial covariation between neuronal responses and decisions may prove useful.
Activation of the cloned muscarinic potassium channel by G protein βγ subunits

Eitan Reuveny*, Paul A. Siesingerg†, James Inglese†, Janine M. Morales†, Jorge A. Ilguez-Lluhis pathological, Robert J. Lefkowitz‡, Mary R. Bourne‡, Yuh Nung Jan* & Lilly Y. Jan*

* Howard Hughes Medical Institute, and the Departments of Physiological and Biochemistry, University of California, San Francisco, California 94143, USA
† Howard Hughes Medical Institute, and the Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
‡ Department of Pharmacology, University of California, San Francisco, California 94143, USA
§ Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA

Acetylcholine released during parasympathetic stimulation of the vagal nerve slows the heart rate through the activation of muscarinic receptors and subsequent opening of an inwardly rectifying potassium channel. The activation of these muscarinic potassium channels is mediated by a pertussis toxin-sensitive heterotrimetric GTP-binding protein (G protein)5-8. It has been resolved whether exogenously applied G6 or G7, or both, activate the channel. Using a heterologous expression system, we have tested the ability of different G protein subunits to activate the cloned muscarinic potassium channel, GIRQK. We report here that coexpression of GIRQK with G6, but not G7, in Xenopus oocytes results in channel activity that persists in the absence of cytoplasmic GTP. This activity is reduced by fusion proteins of the β-adrenergic receptor kinase and of recombinant Gα,GDP.

FIG. 1 Coexpression of GIRQK1, β1 and γ2 results in channel activation. a–c, inwardly rectifying potassium currents recorded under two-electrode voltage clamp from Xenopus oocytes injected with cRNA for GIRQK1 and for the various G protein subunit combinations. a, α-2, β1 and γ2; b, β1, γ2; or c, α-2. The holding potential was 0 mV (the equilibrium potential for potassium, EK) and current elicited by voltage pulses from −100 to +50 mV in 10 mV increments. d, Current–voltage (I–V) plot of the steady-state current for traces shown in a (■), b (□) and c (▲). e, GIRQK1 current induced by α-2, β1, γ2. In the same batch of oocytes, the average endogenous current present in oocytes injected with only β1, γ2 (n = 9) was subtracted after leak subtraction from the average total current in oocytes produced by coinjecting GIRQK1 and α-2, β1, γ2 (n, n = 9). Current traces elicited by voltage pulses from +10 to −120 mV in 20 mV increments. f, A bar graph of the mean current amplitudes at −100 mV from oocytes injected with cRNA for GIRQK1 (−160 ± 43 nA; n = 3) or GIRQK1 together with α-2β1γ2 (−836 ± 62 nA; n = 32), β1γ2 (−771 ± 47 nA; n = 39) or α-2 (48 ± 38 nA; n = 14), or β1γ2 alone (−129 ± 18 nA; n = 10). Current amplitudes recorded from oocytes injected with GIRQK1 and α-2β1γ2 or β1γ2 were significantly larger than those from oocytes injected with GIRQK1 and α-2, GIRQK1 alone or β1γ2 alone (ANOVA followed by Fisher's least significant difference test (LSD), P < 0.001). Assuming a linear leak, the current at +20 mV was scaled and subtracted from the current at −100 mV (measured at the end of the voltage pulse) or a P–T /10 protocol was used.

METHODS. Oocytes were isolated as described previously, and injected with 50 nl solution containing in vitro transcribed (−100 ng ml−1) GIRQK1 cRNA, with or without 150 ng ml−1 β1γ2 cRNA, and 3' untranslated region of the Xenopus β-globin gene (gift from A. Conolly). Macroscopic currents were recorded at 22–25 °C using two-electrode voltage-clamp as described previously. The bath solution contained 90 mM KCl; 2mM MgCl2; 5mM HEPES adjusted to pH 7.4 with KOH. Average values are mean ± s.e.m.